

SSSScriptingcriptingcriptingcripting i i i in n n n RGSS RubyRGSS RubyRGSS RubyRGSS Ruby

for Intermediatefor Intermediatefor Intermediatefor Intermediatessss

and Expertsand Expertsand Expertsand Experts

0th Edition

Boris Mikić alias Blizzard

Zagreb, 25.9.2007

Contents:

1. Introduction 4

1.1. Why RAM or CPU? 4
2. Compatibility 5

2.1. Aliasing 5
2.2. Thinking in Advance 8
2.3. Names and Problems 9
2.4. “Stack level too deep” 10
2.5. RAM or CPU? 11

3. Data Processing and Storage 12
3.1. Why “looping”? 12
3.2. Why Methods/Functions? 13
3.3. How to handle Data efficiently 13
3.4. Module or Class? 16
3.5. RAM or CPU? 17

4. Windows 18
4.1. The Basics 18
4.2. The wrong Way to create a Window 19
4.3. Do they look nice? 20
4.4. Window or Sprite 23
4.5. HUD Basics 23
4.6. The Problem with non-vital Information being displayed 24
4.7. RAM or CPU? 24

5. Lag-weg 25
5.1. Algorithm Complexity 25
5.2. What lags and why it lags (RGSS specific) 26
5.3. Decrease Process Time 27
5.4. Don’t fear more Code 29
5.5. RAM or CPU? 31

6. Wannabe-Cool Scripting 32
6.1. Scripts with {} Brackets 32
6.2. One Line Functions/Methods 32
6.3. Too many useless and pointless Commands 34
6.4. Too much SephirothSpawn 35
6.5. Avoid being an Idiot 35
6.6. Re-invent the Wheel 36
6.7. Enforcing Standards 36
6.8. Scripts the World doesn’t need 37
6.9. RAM or CPU? 37

7. Hints and Tricks 39
7.1. Pen on Paper or train your Brain 39
7.2. “Game_System” is your save data’s best friend 40
7.3. Boolean Algebra 42
7.4. The evil Bug in “if” Branching 43
7.5. First this or that? – When “if” goes crazy 45
7.6. The Trick with “unless” – De Morgan’s Law 45
7.7. Comparisons 46
7.8. Instance Variable Access aka Encapsulation 47
7.9. Powerful implemented Iterator Method “each” 50
7.10. Bug Hunter 52
7.11. Global, Local, Instance Variable or Constant? 52
7.12. Inside-Outside or Outside-Inside? 52
7.13. “Uh, what does this Knob do?” 54
7.14. About Superclasses and Mix-ins 54
7.15. NFS – Need for Sorting 56
7.16. RAM or CPU? 58

8. Useful Links 59
9. Summary 60

1111. Introduction. Introduction. Introduction. Introduction

Are you reading this to learn how to script? Then this is NOT for you. If you want to
understand this e-book fully, you need basic scripting knowledge. You can read this, of
course, but you’ll end up wasting your time by not understanding even half of it.
Instead, this e-book will teach you how to become a better scripter. There are far too many
scripters who know just a few basics and in the best case they can make a CMS. I will
teach you how to handle data, how to make windows look nice and handle them efficiently,
how to avoid lag, how to hunt down bugs and how to not be an idiot when scripting. At the
end of each chapter there is a little summary, also teaching you how to choose between
RAM and CPU specific for that chapter.
Note that I will explain you several things, but these are only the basics. You can’t become
a better scripter just by reading this e-book, it will only give you a head start in becoming a
better scripter. You simply can’t become a better scripter without practical experience.

1.1. Why RAM or CPU?

This is the most common question when programming. You will always have to choose
between saving RAM or saving CPU. Should your program work faster or should it be
smaller? Usually programmers avoid re-processing data by storing data. That way CPU
time is saved and RAM is used instead. You will learn when it does make sense to store
data and when it doesn’t.
RGSS Ruby is a scripting language. A Scripting Language is a programming language that
is not being compiled, but interpreted. Interpreted means each line of code gets separated,
compiled and executed on the fly. For those of you who have programmed in compiling
languages like C, C++, BASIC (which was earlier a scripting language!), Fortran, Pascal,
etc. you will most probably remember the short time the compiler needs to translate your
program code into machine code (depending on the size of your code, it doesn’t have to be
short…). Using RAM sometimes can be more reasonable in RGSS, because storing data
into RAM and loading it into CPU cache/registers is being executed the same way in every
programming language. But careful! Storing and Loading data is about 10 to 15 times
slower than executing simple operations like summation.

2. Compatibility2. Compatibility2. Compatibility2. Compatibility

This chapter will show you how to make your scripts work with scripts of other scripters
more conveniently. If you don’t make your scripts compatible, most won’t be used. If a user
has three cool scripts from three other scripters that work together just fine and yours just
won’t fit in, he will kick yours most likely and keep using the other three. Another reason for
compatibility is to save your time and effort. If your script doesn’t work with another one,
you will need time to merge it with the other ones for that user.
If your script can be configured and/or has options, make a working precondition and turn
off all critical options that need to be first set up correctly by users. It’s always a good idea
to make your script work Plug ‘n’ Play as most people don’t bother reading instructions.

2.1. Aliasing

Aliasing is a built-in method to give methods an alias name. alias is a reserved word in
RGSS Ruby.

alias not_for_underaged alcohol

This will give the method alcohol the alias not_for_underaged. Now your class instance can
call the method alcohol through its alias not_for_underaged as well.

child.not_for_underaged
child.alcohol

Both will result in the same. Of course you are not limited to class methods. That what is so
interesting for compatibility is an attribute of the aliasing method. Even if you redefine the
original method, the alias will still execute the original method.

def alcohol
 loop do
 drink
 have_fun
 if enough or evening_over?
 break
 end
 end
end
break point 1
alias not_for_underaged alcohol
break point 2
def alcohol
 not_for_underaged
 if promille > 2.5
 hangover
 end
end

This code will do following:
- define alcohol
- give alcohol the alias not_for_underaged
- redefine alcohol (not_for_underaged will still execute the old method!)
- note how the new method alcohol calls its old definition through not_for_underaged
Now let’s analyze the code more deeply. Let’s try following code:

child.alcohol
child.not_for_underaged

It will result in following actions:

- before breakpoint 1
start alcohol
 loop do
 drink
 have_fun
 if enough or evening_over?
 break
 end
 end
ERROR! Undefined method not_for_underaged!

- before breakpoint 2
start alcohol
 loop do
 drink
 have_fun
 if enough or evening_over?
 break
 end
 end
start not_for_underaged
 loop do
 drink
 have_fun
 if enough or evening_over?
 break
 end
 end

- all
start new alcohol
 not_for_underaged
 # start not_for_underaged
 loop do
 drink
 have_fun
 if enough or evening_over?
 break
 end
 end

 # continue in new alcohol
 if promille > 2.5
 hangover
 end
start not_for_underaged
 loop do
 drink
 have_fun
 if enough or evening_over?
 break
 end
 end

Can you see why it helps the compatibility? You can put into the end of methods or at their
beginning some of your code. Of course, you can get more advanced if you need to
process data differently.

def alcohol
 loop do
 drink
 have_fun
 if enough or evening_over?
 break
 end
 end
 if promille > 2.5
 hangover
 end
end
alias not_for_underaged alcohol
def alcohol(age = 17)
 age < 18 ? go_home : not_for_underaged
end

By default calling alcohol will always execute go_home (no argument was specified, default
is 17 which is less than 18, in other words; you don’t get a drink if you don’t tell your age).
Calling alcohol(18) will result in executing the old code of alcohol. Keep in mind, you cannot
only add code at the end or beginning of the method, you can also override, branch or just
manipulate them in any way.
From my experience so far, you can’t alias module methods if they were defined using def
self.something.

figure 2.1.1. – aliasing and the change of code

Keep in mind that if you alias a method that was already defined in a superclass and
change the superclass’ method afterwards or alias it, you will get a conflict between them
and parts will not be executed at all.

2.2. Thinking in Advance

It’s not really necessary, but it can be of big help sometimes. If you are using several of
your own methods in more than one script, it might be a good idea to always alias them
with the same name. Users will automatically get the Stack level too deep error (see 2.4.
for more information). What you can do is to include a global variable (i.e. $my_script) and
set it as condition in all your other scripts to allow this part of code.

my_script
def my_script
 do_something
end
if $my_extra_do_something != true
 alias do_something_more do_something
 def do_something
 do_this_and_that
 do_something_more
 end
 $my_extra_do_something = true
end
my_2nd_script
def my_2nd _script
 do_something_new
 do_something
end
if $my_extra_do_something != true
 alias do_something_more do_something
 def do_something
 do_this_and_that
 do_something_more
 end
 $my_extra_do_something = true
end
my_3rd_script
def my_3rd _script
 do_something
 do_it_again
end
if $my_extra_do_something != true
 alias do_something_more do_something
 def do_something
 do_this_and_that
 do_something_more
 end
 $my_extra_do_something = true
end

The aliasing of do_something will happen once whatever order your scripts are put into the
editor. This can also help a lot if other scripters are using your aliased method. If any script
already aliased this method, the new one won’t. That results in more code than necessary,
but it can improve compatibility incredibly if used cleverly.

figure 2.2.1. – interacting scripts as block scheme

2.3. Names and Problems

The title says everything. When aliasing methods, you should pay attention to how you
name the new aliases for your methods. Always a good idea would be using the
originalmethodname_yourname_yourscriptname pattern. Or you can develop a unique
style. I name my methods using the originalmethodname_myscriptname_later pattern. I
also cut initialize to init, update to upd and dispose to disp, because those are the methods
I mostly have to alias, so I don’t have to type it out (see any of my scripts for more
examples).
The usefulness of naming your methods correctly is that the names don’t get too long (as in
the SDK pattern for example where you have to include e.g. the date and class name in the
alias name), they still are easy to find and there is as good as no chance that an accidental
Stack level to deep error occurs (see 2.4. for more information).

2.4. “Stack level too deep”

First a note for everybody who knows other programming languages as well: RGSS Ruby
does NOT support recursion! Here is a fine example for recursion in C/C++. This would
be the normal way to make a function that calculates the factorial of a number:

int factorial(int x)
{
 int i, result = 1;
 for (i = 2, i <= x, i++)
 {
 result *= i;
 }
 return result;
}

This is the same function working with recursion:

int factorial(int x)

{
 if (x <= 0) return 1;
 return x * factorial(x - 1);
}

Recursion allows calling the same method over and over as long as there is place on the
stack (see chapter 8 for more information). Here is the function in RGSS:

def factorial(x = 1)
 result = 1
 for i in 2...x
 result *= i
 end
 return result
end

This would be the same code in RGSS if it would support recursion:

def factorial(x = 1)
 return 1 if x <= 0
 return x * factorial(x - 1)
end

You should have seen my face when I found out that RGSS doesn’t support it. And since it
doesn’t, the Stack level too deep error can arise. Following examples of code will raise that
error:

def method_1
 method_1
end

def method_1
 method_2
end
def method_2
 method_3
end
def method_3
 method_1
end

alias new_method_1 method_1
def method_1
 method_2
end
def method_2
 new_method_1
end

Note that recursive codes MUST HAVE a condition of aborting. If a function just calls itself
over and over without ever returning, it’s malfunctioning. I haven’t taken this into account on
the three examples above.

2.5. RAM or CPU?

Now you have learned the basics how to make your script way more compatible with
other’s scripts as well as your own. You should know understand aliasing, what it does and
how to use it correctly. Making your script more compatible won’t either make you need to
use more RAM nor more CPU. The worst thing that can happen is that you have multiple
times the same piece of code in several scripts which is no big deal if they can work
together or are not being executed at all due to smart aliasing.

3. Data Processing and Storage3. Data Processing and Storage3. Data Processing and Storage3. Data Processing and Storage

In this chapter you will learn how to handle data and data processing. In other words, this
chapter IS RAM or CPU. You will learn how you can decrease the number of coded lines.

3.1. Why “looping”?

The answer is very simple. Look at these two examples of code.

call_my_method
x += do_this
y += do_that
call_my_method
x += do_this
y += do_that
call_my_method
x += do_this
y += do_that

x = (x + 1) * 3 + 1
x = (x + 1) * 3 + 2
x = (x + 1) * 3 + 3
x = (x + 1) * 3 + 4

There’s a lot of unnecessary code and with time your code gets hard to overview even if it’s
quite simple. In RGSS Ruby we can solve this problem with looping.

for i in 0...3
 call_my_method
 x += do_this
 y += do_that
end

for i in 1..4
 x = (x + 1) * 3 + i
end

Since there are two types of loops (determined, undetermined) we cannot only use looping
to simplify coding, but also to run an undetermined number of code repetition.

loop do
 x = rand(10000)
 if x == 6284
 break
 end
end

This code will run as long as the random number is not exactly 6284. This is just a brief
explanation what loops are and can be used for (see chapter 8 for more information).

Side note: Don’t get confused by the range definition. 0…3 will iterate from 0 to 2, that means excluding 3
while 1..4 will iterate from 1 to 4, that means including 4. Keep that in mind.

3.2. Why Methods/Functions?

Again the answer is very simple. If you have some piece of code that is used often, it’s a
good idea to group this piece of code into a function. For classes functions are called
methods, but that’s basically the same. Note that it doesn’t make much sense to put some
random code into a function, focus on really grouping code. When you are naming a
function you should give it a name that kind of reflects what it’s doing. This will help you
make your code more readable and easier to overview. Another useful idea is to break
down code into logic groups and finally into functions. Here is an example of code that was
grouped and broken down into various methods. The possibilities are countless.

def remove_enemy_from_map(enemy)
 id = enemy.get_sprite_id
 if id >= 0
 enemy.set_fading_flag
 enemy.character.active = false
 enemy.freeze_current_action
 @spriteset.sprite_takeover_fade(prepare_sprite_fade(id))
 remove_enemy_character(enemy.id)
 @hud.kills += 1
 end
 return id
end

3.3. How to handle Data efficiently

There are many possible ways in which you can store and use data. Keep in mind that
RGSS Ruby is a scripting language and its code is being interpreted and not compiled. This
causes a much slower processing, up to 10 times slower or even more. That’s why it is very
important that your code is fast.
One common problem in this area is data structure. The most commonly used structures
are list, hash and stack. Since RGSS Ruby’s Array class supports the stack commands
push and pop, you can use the array class for any type of arrays, lists and stacks.
Lists work on the FIFO principle (First In First Out). The first data that is added into the list
is the first one that gets removed again. Imagine a pipe where you put balls into it. The ball
you put first in will come out as first on the other side.
Stacks work on the LIFO principle (Last In First Out). The last data that was added will be
the first one that is removed again. Imagine a few plates. If you respect the rule that you
can take only one plate at once, you can only take the plate that is on top.
Hash is a completely different story. Hash works on the principle of spread addressing.
While in an array data is stored sequentially, hash stores data anywhere. It uses a key to
access data. Naturally such an access can very effective if the data you handle is very
large, changed rarely and the so-called hash table is filled about 75%. Arrays and Hash
both have the same average case of accessing data, though hashs can have a complexity
of O(n) in worst case. In case of RGSS Ruby in RPG Maker mostly you have only small
amounts of data. 1 MB (which would make 250000 4-byte integers) is a relatively small

amount of data if you consider that the average RAM today everybody has, is 512 MB.
Even though RAM means Random Access Memory and data can be accessed very
quickly, no matter where it is stored, there is a problem with CPU L1 and L2 cache which
will work much slower if you have to load data from all over the RAM, since the L2 cache
load data blocks from the RAM. L1 loads blocks from L2. This ensures optimal CPU
performance as L1 cache memory is several times more expensive than L2 cache memory
which again is several times more expensive than normal RAM. That’s why nobody is
making RAM out of the same technology that’s used for L1 or L2 cache: Financially it
simply doesn’t pay off. This is also the reason why CPUs with a bigger cache memory are
valued very high and why it’s said that it’s optimal; it’s the optimal solution between time
and money. If some required data isn’t in the cache, this is called a cache miss and a new
block needs to be loaded which requires time. So use hash only if it is really necessary,
really makes sense, really would result in a code that is much easier to overview and
improve the performance otherwise. A nice example would be a very fast collision detection
if you have a hash which’s keys are map coordinates and all characters on the map at this
specific position are stored in an array in this hash value.
Never use hash for configurations! Don’t let users set up data and/or configurations with
hash! Those would be very bad mistakes and only show people who have understandings
of this method that you don’t. The problem is that hashs just are not efficient enough in
comparison to arrays if you don’t use large amounts of data which you rarely will in case
RGSS Ruby.
There is a clever alternative to hash, which works much faster and is even much easier to
overview. This alternative is excellent for configurations by the user and mapping data
similar to how hash actually works. The actual trick is that the data mapping IS spread, but
the actual data in the RAM is stored as one block. In the praxis it has proven to be way
easier to use by users. This alternative is a simple conversion method. As argument the
method gets a key which it will transform to the corresponding value. The only
disadvantage of such a method compared to hash is that it’s constant data. You cannot
change the mapping during the game at all. But every non-constant configuration is stored
in special classes anyways (see 7.2. for more information) so this method is as good as
100%-ly in advantage compared to hash configurations.
Example: Let’s say you want equipment parts to trigger some special skills. An example
would be a method like using the template when EQUIP_ID then return SKILL_ID:

def trigger_skill(id)
 case id
 when 1 then return 12
 when 4 then return 31
 when 7 then return 9
 when 12 then return 4
 when 81 then return 27
 end
 return 0
end

An equivalent with hash:

TRIGGER_SKILL = {}
TRIGGER_SKILL[1] = 12

TRIGGER_SKILL[4] = 31
TRIGGER_SKILL[7] = 9
TRIGGER_SKILL[12] = 4
TRIGGER_SKILL[81] = 27

Or the other way hash can be defined:

TRIGGER_SKILL = {1 => 12, 4 => 31, 7 => 9, 12 => 4, 81 => 27}

The last example is awful. It’s quite hard to overview, especially for somebody who is not a
programmer. The second example could pass, but I would say using ANSI syntax like in
the first example should be easiest to understand. You can almost read it like “when id is 1
then skill is 12, when id is 4 then skill is 31…” The second example isn’t as easy to read.
Using a conversion method will make codes easier to overview and especially
configurations the user has to set up. It also uses only the RAM required for code
execution, which DOES take more space than the hash would, but it’s stored as a data
block and that way it will be way quicker in the CPU cache. Also keep in mind that memory
storing and loading operations are 10 to 15 times slower than arithmetical-logical
operations. Accessing one hash piece requires some time, another one far away takes the
same amount of time again, etc. while accessing one and the same method a couple of
times is much faster. That in both cases the parameter carry-overs needed for method
execution (yes, getting a hash element by using a key is a method) took also time to be
stored on the system stack as well as the return address to the current command was not
taken into account as it happens in both cases and doesn’t give any of those methods an
advantage (see 6.2. for more information).
Another data management possibility is using arrays. You can easily manipulate data by
adding it at the end of the array, at the beginning, removing it from the end or removing it
from the beginning. Here is a simple explanation of those 4 commands:

push – add new item at the end
unshift – shift array and add at the beginning
pop – remove last item from the end
shift – remove first item and shift array

figure 3.3.1. – how push, unshift, pop and shift work

Read the RMXP Help File for more information. Note that you can add anything into an
array. Your arrays can consist out of many various instances of any classes. There’s
nothing that prevents you to have 3 integers, one actor and 5 strings in an array. There’s
also the possibility to use an array if a method is supposed to return more than just one
value.

def throw_2_dices
 return [rand(6) + 1, rand(6) + 1]
end

figure 3.3.2. – data accessing and reading a) array b) hash

3.4. Module or Class?

A question many scripters would kill for to get the answer. And in the end it’s so simple.
Use classes to process instances of data. For example, each actor is one instance, like a
number or a bunch of grouped numbers. Imagine an array of 100 numbers free to your
disposal. Classes are just bigger and even support complex processing via methods. A
method is exactly the same as a function. The only difference is that a method directly
processes the instance, doesn’t need the class instance passed as argument and only gets
processed by the instances of this specific class. One class can’t use the method of
another class. For example the class Bitmap will throw an undefined method error if you try
the size method on it while on an instance of Array it will work just fine.
Modules are another story. Modules don’t contain data (but they can contain some critical
data), they are only a bunch of methods that can be used anywhere to process anything.
There are many scripters who use modules for constants for configuration. This is a good
solution if you have 10 or more options to avoid some configuration conflicts with other
scripts, but for less it doesn’t make much sense.
Examples of classes are the various windows in RPG Maker. Here is an example of loading
an instance and working with it.

win = Window_Status.new
win.refresh
win.x += 16

In case of using a module it’s different. You don’t need an instance of the module to access
it.

Input.trigger?(Input::B)

Keep in mind that when you define module methods, you can either use the normal way
like def method_name and module_function :method_name, directly def self.method_name
or def NAME_OF_MODULE.method_name.
Most probably you have noticed the Input::B. This is the way constants are access from
within modules. The :: is called scope operator. So modules are mostly used for a
collection of methods and functions. You can also create methods like def self.something in
classes and use them directly as if it was a module.
See chapter 8 for more information about Object Oriented Programming.

class Game_Party
 def self.load_from_savefile(file)
 tmp = Marshal.load(file)
 $game_party = tmp if tmp.is_a?(Game_Party)
 end
end
Game_Party.load_from_savefile(file)

This example will work just fine, you can try it out. Just be sure to use it on a real IO
instance. You can use a save game file and call it as long as EOF (End Of File) is reached.
You will find out that the party status from the save game file was loaded.

3.5. RAM or CPU?

In this chapter you were made familiar with some basic terms of data handling. Data can
become a cruel enemy is there’s too much of it. Better let the CPU convert data instead of
the RAM looking for it, especially if it’s constant data. Data that is converted within the CPU
already is in its cache while the data from the RAM is far away from that. But that makes
only sense if the data is spread. Make hash your last solution in programming, not the first
one.

4. Windows4. Windows4. Windows4. Windows

No, it’s not the operating system. This chapter will teach you how to handle windows, since
they are actually consisting out of several sprites and sprites are the ones that can cause
the most lag, especially if they are large.

4.1. The Basics

Windows are not as simple as it seems at first. Here are a few things you should always
keep in mind as they will help you all the time.

1. Windows are several sprites, many windows will cause lag.
2. Windows use a bitmap called contents, it’s size is the same as the window’s, but
smaller by 32 pixels in width and 32 pixels in height with an x and y offset of 16. If a
window is smaller than 33×33 pixels and you try to create a bitmap by the default way,
you will get the error could not create Bitmap.

3. Drawing windows’ contents (called refreshing) is time consuming and can cause lag.
Best if you refresh display only when it changes.

4. NEVER refresh a window all the time! Update yes, refresh no.
5. Moving windows is time consuming and can cause lag.
6. Changing the x and y attributes will cause the window to move, while changing the ox
and oy attributes will cause the bitmap within to move, not the window itself.

7. The window’s z position is a third dimension value and determines if a window should
be displayed over other windows, sprites, etc. A higher value will bring it closer to the
player.

8. If the bitmap within the window exceeds the window size, little arrows from the
windowskin will be displayed. You just have to keep the bitmap size under control to
prevent this.

9. Turning a window active will cause the cursor (if there is one) to blink while turning it
inactive will cause the cursor to freeze its animation. To remove the cursor by default
you need to set the window’s index to -1. For this always use self.index and never
@index directly. Note that only Window_Selectable has cursor handling methods,
Window_Base has none. Though, you can create you own Window classes that can
work with cursors from Window_Base if you want.

10. Turning a window into pause mode will cause the little indicator at the bottom to appear
which is known from the message window when it waits for user input.

11. Dispose windows if you don’t use them often or don’t need them. Don’t forget to set the
variable containing the instance to nil. Clever window disposal and creation is the key to
a lag free window system, even if it is animated (e.g. moving windows).

12. Don’t make windows bigger than you actually have to. Bigger windows cause more lag.

In RGSS there is a superclass called Window which has all the basics inherited. Any
instances is created internally with several sprites which is very fast due to the fact that
Window is compiled into the RGSS10XX.dll. Window_Base is a class with enhanced
methods to support easier working with it. Window_Selectable is a subclass of
Window_Base and is used for windows with selections, because it already has several
helpful methods predefined.

4.2. The wrong Way to create a Window

Window creation is not loading instances. It is connected to coding a window display. The
most often used template to create windows is.

class My_Window < Window_Base
 def initialize
 super(x, y, w, h)
 self.contents = Bitmap.new(width - 32, height - 32)
 self.contents.font.name = ‘Arial’
 self.contents.font.size = 22
 refresh
 end
 def refresh
 self.contents.clear
 self.contents.draw_text(x, y, w, 32, ‘string’)
 end
end

If you create a window the wrong way, it will just look ugly (figure 4.2.1.). Imagine a refresh
method like this one:

 def refresh
 self.contents.clear
 self.contents.draw_text(13, 2, 128, 32, ‘This’)
 self.contents.draw_text(53, 7, 128, 32, ‘window’)
 self.contents.draw_text(111, 5, 128, 32, ‘looks’)
 self.contents.draw_text(140, 12, 128, 32, ‘awful!’)
 end

figure 4.2.1. – this window looks awful

Check often how your window looks like. It’s always a good idea to use consistent offsets
between various drawings. This code will generate a window like on figure 4.2.2..

 def refresh
 self.contents.clear
 self.contents.draw_text(0, 0, 128, 32, ‘This’)
 self.contents.draw_text(72, 0, 128, 32, ‘window’)
 self.contents.draw_text(0, 28, 128, 32, ‘looks’)
 self.contents.draw_text(72, 28, 128, 32, ‘better!’)
 end

figure 4.2.2. – this window looks better

The 128 and 32 serve for a special purpose. The 128 is the width of the drawing. If your
text is too big to fit in, it will be squeezed. The 32 serves for the height. You can leave this
value usually 32, since it doesn’t have too much of an effect if this value is higher than
necessary. Usually this height is the font size, though some fonts might be actually bigger
when drawn than the font size. That way it’s possible that a font’s size is 24, but the font’s
drawing takes up a height of 26.

figure 4.2.3. – squeezed text

figure 4.2.4. – height too small

I’m just happy that windows in RGSS are limited to rectangles… Find out more wrong ways
to create windows for yourself. And for God’s sake, don’t really use them!

4.3. Do they look nice?

figure 4.3.1. – awful window order

They surely do not. At least not on figure 4.3.1.. What’s wrong with the picture? I mean why
does it look awful? There are three things that need to be considered:
a) window size
b) window position
c) window bitmap offset
Your best bet is to make all windows have size dividable with 32 (64, 96, 128…) or in some
special case 16 can be enough (48, 64, 80, 96, 112…). It is important that you never make
them less than 33×33, other wise you will get an error during the bitmap creation as said
before.
Window position is a slightly different story. It is also a good idea to make windows have
positions (x and y coordinates) dividable by 8. If you animate window movement, you can
disregard this rule of esthetic as long as the final position of the window still respects this
rule.
The last thing would be the problem with bitmaps exceeding the window size (and position,
ox and oy). Usually you should avoid this to happen. The only situation where it makes
sense to have bitmaps larger than the window are scrollable windows. These are not really
rules, they are there to help you create an interface somebody can look at without getting a
heart attack.

figure 4.3.2. – good looking window order

Doesn’t figure 4.3.2. look much better? The window properties are:

1. x = 0, y = 0, width = 160, height = 224
2. x = 0, y = 224, width = 160, height = 96
3. x = 0, y = 320, width = 160, height = 96
4. x = 0, y = 416, width = 160, height = 64
5. x = 160, y = 0, width = 480, height = 480

Most probably you have noticed that all numbers have a common divisor: 32. The next
problem would be something almost every beginner scripter has encountered. Do you
recognize the situation from figure 4.3.3.?

figure 4.3.3. – problems with arrows

As already said a few times, this happens, because the bitmap is bigger than the window
size allows. In this specific case the window is 96×64 and the bitmap is larger than 64×32.
One easy way to avoid this unwanted effect is to ensure the bitmap’s size in def initialize.

 def initialize
 …
 self.contents = Bitmap(width - 32, height - 32)
 …
 end

As you can see the entire trick consists out of the red bolded part. width and height are
methods defined within the Window class and return the width and height of the current
window if the words width and height are not being used as local variables. This will create
sometimes bigger bitmaps than necessary, but at least it will ensure that no glitches occur
and no arrows are being displayed.
The last problem is again the window position. Take a look at figure 4.3.4..

figure 4.3.4. – a picture which sight can kill babies

Overlapping windows are no problems in general. The problem occurs with windows that
don’t look like they are supposed to be overlapped.

figure 4.3.5. – looks as if the designer just messed up

Figure 4.3.5. looks as if the designer just messed up and not as if they are supposed to be
overlapped. Figure 4.3.6. shows a much better overlapping look.

figure 4.3.6. – nothing special, but looks much better

4.4. Window or Sprite

Use a window if you want the window skin to be used. If you want a transparent
background or display a special image as background, don’t use a window with opacity = 0,
but use a sprite. Be aware that you will run the risk that you will have to code special
methods again (like draw_actor_hp) or copy them from the Window_Base class in the case
you are using them. Although it might prove even better to code special methods which
also use a smaller font, etc. But be careful as most probably you will end up with more
coded lines and therefore a code that’s harder to understand. In any case this will decrease
the lag of your interface EVEN THOUGH you have more code (see 5.4. for more
information).

4.5. HUD Basics

There are 4 things you need to keep in mind when working with HUDs.

1. If your HUD can be turned off, make sure you DISPOSE the window/sprite and not
make it just invisible. It will result in a little bit more code and way less lag.

2. Display those informations which the player needs access all the time. Displays like
Strength are pointless as it isn’t vital that the player knows the exact value all the time
and it takes up space on the screen.

3. Refresh HUDs ONLY if data has changed. The map is already burdened with all the
event sprites, the last thing it needs is to refresh your HUD every second or worse,
every frame. To do so, store all the data that is displayed into instance variables and
compare them in the update method with the current values. If any value has changed,
refresh the HUD and store the new values. You can go beyond that and refresh only the
section that has changed. This will result in more code, but can decimate even the
refresh time. i.e. Imagine 20 values from which each needs 0.01 seconds to be drawn.
That would result in 0.2 seconds to redraw the whole HUD and this would cause visible
lag each time to do so. If you redraw just the one that has changed, it will need only
0.01 seconds and go unnoticeable. You can remove parts of the display on a Bitmap
instance by using fill_rect(x, y, width, height, Color.new(ANY, ANY, ANY, 0)). This will
remove the given section of the bitmap and you can draw the new information. If you
want to go even beyond that, you can skip refreshing static words like HP, SP or EXP.

Depending on how your gradient bars/look like, you might not even need to remove
them with fill_rect before redrawing them. (I use a trick for my HUD where I draw the HP
value on the gradient bar. That way by just redrawing the gradient bar I already
removed the HP/MAXHP display as well. I also don’t need to clear that section of the
gradient bar first due to the way I let them be drawn.)

4. Dilemma whether to use a sprite or a window (see 4.4. for more information).

4.6. The Problem with non-vital Information being displayed

First off you need to decide which data is vital and which isn’t. A HUD that contains a gold
display with an icon will cause lag each time it is redrawn, it will take up screen space and it
will only be refreshed after each battle anyway. In case of an ABS as battle system it can
work out if it is kept small, since it changes often. But in the end, why does the player in a
dungeon need to know the exact wealth of his heroes ALL THE TIME? He can easily call
the menu and take a look at it if it really interests him. As said, only in an ABS it makes
sense and only if it is kept as small as possible. The most vital informations are HP, SP,
EXP and other battle related values like Limit-Break gauge, Soul Rage percentage,
Stamina, etc. It really doesn’t make too much sense to use a HUD system if no ABS is
being used. HUDs for mini-games are ok, HUDs for special options like stamina on the map
are ok. Everything else should be considered very well if it is worth to increase the lag on
the map which is already overfilled with lag-causing events and event sprites anyway. Not
to talk about the huge Tilemap of a 200×200 sized map.
The real problem with non-vital information being displayed is screen space. Less space to
see what’s actually happening in the game will decrease the gaming experience. So don’t
overfill the screen, keep HUDs as small as anyhow possible.

4.7. RAM or CPU?

In this chapter you should get an idea how to make windows look professional. Different
than in nature-mapping, randomness is a big no-no when creating a window interface.
Don’t display useless or not so important informations and don’t refresh them all the time.
Use sprites if your background is supposed to be transparent and/or you are using a
custom image as background. You can just draw the image on the sprite. And don’t forget
the 32 pixels rule. It can save you quite some designing time if you have only 20×15
(640/32×480/32) possible positions instead of 640×480.

5555. Lag. Lag. Lag. Lag----wegwegwegweg

This chapter will teach you about the worst archenemy of every programmer and scripter:
Lag. Lag-weg literally means Lag-away as weg means away in German.

5.1. Algorithm complexity

This field is complex enough to write a 20 pages essay about it, so I will give only a brief
explanation what it means and what it’s good for without using the appropriate terminology.
It’s quite simple: Algorithm complexity is used to determine formally an algorithm’s speed
depending on the given parameters. Check out this code:

p 1
if a
 s = Sprite.new
end
c = d + 11

What do you think its complexity is? It’s O(1). Now this one:

for i in 0…n
 f += determine_special_string(n)
end

The algorithm complexity is O(n). What’s with this example?

for i in 0…n
 for j in 0…n
 for k in 0…n
 make_some_lag
 end
 end
end

This algorithm’s complexity is O(n3). Simply said, algorithm complexity tells you how the
number of execution repeating depends on the number of processed data. In the last
example an n of 2 would cause 8 iterations while an n of 3 would already cause 27
iterations and an n of 4 would cause 64 iterations. Can you see the pattern? Do you see
how it increases rapidly? An n of 10 would cause already 1000 executions of the
make_some_lag method. The most common complexity is (n2) There were many
algorithms developed that have a lower complexity. One of the favorites are algorithms with
complexity of O(n×log2(n)). The log (logarithm) function is the opposite operation of an
exponent. For example, those equations here are correct and actually mean the same
thing:

log232 = 5
32 = 25

The equally colored numbers are the same in both equations. You could read it like this: “If
the base is 2, then the exponent needed to get 32 would be 5.” (see chapter 8 for links
about logarithmic algebra). All in all, this complexity is popular as it works like a damper.
Examples of this would be: log2(2) = 1, log2(32) = 5, log2(1024) = 10, log2(1048576) = 20. If
n becomes 1000, only 10 iterations are needed. If n becomes even 1000000. the number of
iterations is just 20. The n multiplication in this complexity will have a heavy impact on the
number of iterations, this is true, but the complexity O(n×log2(n)) is much closer to O(n)
than it is to O(n2).
The field of algorithm complexity also does best-worst-average case scenario analysis. The
explanation what that means is also quite simple. Image, that you are searching an array
for one specific number. The best case scenario would be if the number was at the very
first position. The worst case scenario would be that it’s at the last position or not there at
all, since then you would need to iterate through all of the array’s elements only to find out
it’s not there. Average case scenario is (best + worst) / 2 or in other words: In average the
searched number is exactly in the middle. This is how algorithm complexity is usually being
determined. Each factor or lower complexity components are being removed as their
influence decreases with the number of iterations.
Let’s say the average case scenario’s complexity is 5/4*n4+2*n2+43. The algorithm
complexity is simply =(n4) as any factors and lower complexity components are being
removed. See chapter 8 for links about algorithm complexity.

5.2. What lags and why it lags (RGSS specific)

In common, graphics are known to cause the most lag, except for algorithms with a high
complexity. The problem is that graphic handling is much more complex than it seems. A
simple method like set_pixel in the Bitmap class causes a chain reaction. The Graphics
module handles the display in RGSS. Changing one pixel using the method mentioned
before will cause a change of data in the class instance itself, in the window/sprite that
handles the Bitmap instance and finally an update in the Graphics module which needs to
update the screen display by redrawing it with all the new information the next time
Graphics.update is called. This is also the reason why invisible windows/sprites lag and
each refresh lags.
Specifically in RGSS sprites and windows cause the most lag. The highest lag can be
created in an interface with many created windows or the map itself with many events.
Each event has a sprite assigned. Each sprite causes lag, regardless if it has a graphic or
not since the testing of this sprite and it’s updating already takes quite some CPU time.
Updating the event itself is quite fast, since the Interpreter class only needs to acquire
commands and the execute commands. A map with 100 events that are being updated, but
without sprites at all will cause unnoticeable lag. A map with 100 events and sprites without
graphic that are not being updated will also cause little lag, but it might be noticed. This
shows that just the mere presence of sprites causes lag. A map with 100 events and 100
visible sprites would look awful. This is the reason why the most Anti-Lag Systems are
Event-Anti-Lag Systems that prevent updating events and their sprites outside of the
screen, since they player doesn’t see them anyway. The makers don’t really care what
happens to the event, they only use it to determine whether the sprite should really be
updated or not. Blizz-ABSEAL has a more powerful technique to prevent lag. Instead of just
disabling the update of those sprites, the sprites are being disposed and removed from

memory completely when the event is out of the updating range. The event update is also
being restricted during that time.
So keep in mind that graphics are what causes most lag in RGSS. Especially sprites and
windows which consist out of several sprites (see chapter 4 for more information)!
That’s why you should concentrate on disposing invisible windows and sprites. This will
increase the number of lines of your script, but also make it so fast that many will envy you
for its performance power.

5.3. Decrease Process Time

Remember this: Executing each line is a nuisance for RGSS. If you want to speed your
script you can do that in various way, The first thing you can do is to change your strings.
One quoted strings are processed faster by the engine.

bitmap.draw_text(0, 0, 608, 32,
 ‘This string is being processed faster ’ + “than this one.\n”)

Use double quoted strings only if you use character substitutions (like “\n”) or
interpolations/variable embedding (like “#{some_numeric_calculation_or_value}”). Don’t
use variable embedding if you have just one value. You can just use value.to_s which will
convert value into a string.

bitmap.draw_text(0, 0, 128, 32, “#{actor.hp*100/actor.maxhp}%”)

bitmap.draw_text(0, 0, 128, 32, $game_party.gold.to_s)

The first code above would draw out the percentage of the remaining HP of actor with a %
character, the second would draw out just the number of gold the party currently has. Using
something like this is unnecessary:

bitmap.draw_text(0, 0, 128, 32, “#{$game_party.gold}”)

Or worse:

bitmap.draw_text(0, 0, 128, 32, “#{$game_party.gold}”.to_s)

Another example on how to decrease process time obviously less code. With less code I
don’t mean a shorter script, but removing useless lines and unnecessary temporary
variables (see 5.4. for more information). The only thing that’s more powerful, is conditional
branching. Even if you have a formidable number of coded lines, your code will still be quite
fast if most of it isn’t even executed if not necessary. You can also decrease process time
by using memory blocks instead of spread memory addressing (see 3.3. for more
information).
A trick to decrease process time is to store method results, so those methods don’t need to
be executed all over again. Instead of using a code like this:

for actor in $game_party.actors
 actor.hp -= calculate_special_skill_damage(skill)
end

You should rather use a code like this:

result = calculate_special_skill_damage(skill)
for actor in $game_party.actors
 actor.hp -= result
end

Though, always keep in mind that this only makes sense with more complex calculations.
Storing and loading memory between CPU and RAM is about 10 to 15 times slower than
simple arithmetical-logical operations. In the first code the method gets executed each time
for each actor. In the second code the method gets executed only once and the result will
be used later. This might not be a big decrease of processing time, but imagine you
execute one method for each skill you have in your database which is, let’s say, 200 and
within this method you execute another thing like that for each of the, let’s say, 300
animations you have in you database. Something like this will result in 200×300 = 60000
executions of the actual part for the animations. Do you want your script to take 60000
times longer for a part of code? I don’t think so. Note that this does only make sense if the
result really is the same for each actor like in the given example.
Here is an example where this won’t help though:

for actor in $game_party.actors
 actor.hp -= calculate_special_skill_damage(actor.id)
end

result = calculate_special_skill_damage(actor.id)
for actor in $game_party.actors
 actor.hp -= result
end

The second code will either give you an error (undefined method ‘id’ for nil:NilClass) or
worse: It will go through. In this case the result depends on which actor it is, so you can’t
calculate it in advance and store the result. You have no other choice than to calculate it
each time for each actor, since it depends on the actor.
Another place where you can improve the performance would be stopping to process data
more than once. This mostly happens if you don’t fully understand how RMXP works. Here
is an example of processing the same thing two times.

number = 5
“#{number}”.to_s

This is unnecessary. Embedding and calling .to_s do the same, only the embedding is an
operation that needs more time to be executed. Use to_s, it’s about twice as fast. But be
careful! Check out the next two codes.

nums = [0, 1, 2, 3]
“#{nums[0]} #{nums[1]} #{nums[2]} #{nums[3]}”

nums = [0, 1, 2, 3]
nums[0].to_s + nums[1].to_s + nums[2].to_s + nums[3].to_s

What do you think? Which one will work faster? You might believe it to be the second one
and you are right. But it will work faster by less than 2%. Why is that so? It’s pretty simple.
to_s might be an operation that needs less time to be executed than variable embedding,
but the concatenation of the strings (that means one is put at the end of the other using the
+ operator) will cause a CPU time loss. So, if you need to convert a variable to a string, use
to_s, but if you need to convert it to a string and concatenate with another string, it pretty
much doesn’t matter which method you use. Just be sure not to use both.

5.4. Don’t fear more Code

A problem many of you have encountered is most probably the problem when your code
gets bigger and bigger. There are two different types of bigger getting codes.
The first is the one that has redundant lines. You could have used a different idea or
method to process your data. You could have used less memory to process your data. It
isn’t bad if you have such lines, but try to keep them to a minimum. Most of those lines get
created by your missing knowledge of how computers work and how RGSS interprets
commands. When you have more experience and go through your older codes, you will
often find lines where you will think or say “Hah! Why did I do THAT?! I could have easily
done it that way, saved myself that temporary variable and had only 4 commands instead
of 7…” or “Hey… I actually don’t need this variable…” or…
The second type of code is what I call separation code. Of course there are things you can
code elegantly with only several lines of code like a slanted gradient bar. But how much
sense does it really make? This type of code uses conditional branching to separate code
processes. Your elegant code might be able to process this and that and that thing, too, but
if there is a better solution for that and that thing, why should an universal code process
them if they could be coded more efficiently? Use conditional branching to separate them,
let only this be processed by your basic code, create a new code for that and that thing
instead. This will result in more code, but a better script as well. Example: A Gradient Bar
Styler with 2 styles.

class Bitmap
 def gradient_bar_2(x, y, w, h, fill_rate, c1, c2)
 # fill background with black color
 fill_rect(x, y, w, h, Color.new(0, 0, 0))
 # iterate through x coordinates, but not for all, only for the
 # fill_rate
 for i in 0...(w * fill_rate).to_i
 # iterate through y coordinates
 for j in 0...h
 # how the calculation works:
 # 1. base color is the color of c1
 # 2. get the difference between c2 and c1
 # 3. depending on which iteration it is, a color between

 # c1 and c2 will be chosen
 # 4. what “* i / w” is for: it will multiply the difference
 # with the “percentage” of the current iteration and modify
 # the difference
 r = c1.red + (c2.red - c1.red) * i / w
 g = c1.green + (c2.green - c1.green) * i / w
 b = c1.blue + (c2.blue - c1.blue) * i / w
 # if the second style is used
 if $style == 1
 # This will modify the colors depending on which “row” is
 # currently being drawn. “style 1” will make the upper
 # lines darker than lower lines. The lowest lines are in
 # the normal color. The result is a multi gradient.
 r = r * j / h
 g = g * j / h
 b = b * j / h
 end
 set_pixel(x+i, y+j, Color.new(r, g, b))
 end
 end
 end
end

Drawing pixel per pixel (this is what set_pixel does) is very time consuming and can cause
incredible lag. set_pixel is almost 40% faster than fill_rect and that means, use set_pixel if
you need to draw one pixel, but use fill_rect if you need two or more pixels. Here is a
solution which will cause style 1 to still consume as much time as before, but style 0 will be
drawn MUCH faster.

class Bitmap
 def gradient_bar_2(x, y, w, h, fill_rate, c1, c2)
 fill_rect(x, y, w, h, Color.new(0, 0, 0))
 # check for style 1 already at the beginning
 if $style == 1
 for i in 0...(w * fill_rate).to_i
 for j in 0...h
 r = (c1.red + (c2.red - c1.red) * i / w) * j / h
 g = (c1.green + (c2.green - c1.green) * i / w) * j / h
 b = (c1.blue + (c2.blue - c1.blue) * i / w) * j / h
 set_pixel(x+i, y+j, Color.new(r, g, b))
 end
 end
 # this piece will get executed if “style 0” is being used.
 else
 for i in 0...(w * fill_rate).to_i
 r = c1.red + (c2.red - c1.red) * i / w
 g = c1.green + (c2.green - c1.green) * i / w
 b = c1.blue + (c2.blue - c1.blue) * i / w
 fill_rect(x+i, y, 1, height, Color.new(r, g, b))
 end
 end
 end
end

By comparing those codes directly (without the commented lines) you will notice that the
second code is longer by 4 lines, but it works much faster in case style 0 is being used. But
hey, you don’t have to believe me that code 2 is MUCH faster with drawing style 0. TO see
it for yourself, just copy the first code and try each style. Then copy the second code and
try them again. You will notice incredible lag with style 1 in both codes, but style 0 will work
in the second code unbelievably faster. If you are going to try it out, make a new RMXP
project and additionally use this drawing control code as help. Just add it above main as
well as one of the codes for the gradient above.

$style, $c1, $c2 = 1, Color.new(255, 0, 0), Color.new(255, 255, 0)
$sprite = Sprite.new
$sprite.bitmap = Bitmap.new(128, 16)
$sprite.z = 1000
class Scene_Map
 alias _5_4_test update
 def update
 $sprite.bitmap.gradient_bar_2(0, 0, 128, 16, 0.8, $c1, $c2)
 _5_4_test
 end
end

5.4.1. – the evil, lag causing gradient bar (left style 0, right style 1)

You may think this is not much of an improvement, but imagine a gradient bar styler with 6
styles where 5 styles could have been coded better.
If you are a caring scripter and keep your older scripts up to date, often you will see your
older codes and have the itches to improve them. You will just feel the need to make them
better, to make them reflect your current state of knowledge. (i.e. You won’t find my Credits
script anywhere on the web anymore. The improved Picture Movie Scene now does what
my Credits script did and much more.)

5.5. RAM or CPU?

Lag is a problem everywhere in programming, not only game development. Lag is only a
laic term to describe that the CPU isn’t powerful enough to process data fast enough that it
will go through unnoticed. Learn how programming works, learn how algorithms work, learn
how your programming language works and learn how a CPU works and you are one step
closer to decrease lag permanently. Keep in mind that this chapter isn’t the only one that
explains the problem with lagging, but it is a chapter to give you a better insight into the
why and what you can do about it. Technically spoken, this entire e-book is just one big
Lag-weg e-book.

6. Wannabe6. Wannabe6. Wannabe6. Wannabe----Cool ScriptingCool ScriptingCool ScriptingCool Scripting

You are a scripter/programmer, but before all, you are a human being like everybody else.
There just are people in the world who seem to believe they would be better than other for
either no real or some really idiotic reason. You won’t come over as cool if you’re being an
idiot and rude to people. In this chapter we will work on your relations to the world around
you, since it doesn’t evolve around you: You evolve around it.

6.1. Scripts with {} Brackets

To clear out all misunderstandings first, a {…} command will do the same as do … end will.
Those commands are used to define block commands. Block commands are being put
together and interpreted altogether. This CAN improve performance if used cleverly, but
doesn’t have to. Any local variables defined within a block are removed when exiting the
block.

loop {
 a = 0 if a == nil
 a += 1
 break if a == 100
}
a.ceil

This will give you an undefined method or variable error for a. For more specific details, see
the RMXP Help File. Keep in mind that {} brackets are also used to determine a hash data
structure as Hash is an arbitrary class in RGSS Ruby very similar to Array which can be
defined by using [] brackets. {} brackets are also used when embedding variables into
strings (see 5.3. for more information). As you can see, {} brackets have various functions.
So using {} brackets in scripts is in no way wannabe-cool scripting even if it might seem like
that.

6.2. One Line Functions/Methods

One line methods and functions seem at first sight only a good waste of space. To make
you understand why they are very time-consuming operations, you first need to understand
what happens when a method is called. I will give you only a brief explanation on a basic
CPU architecture, since you can write several books on CPU architecture.
A CPU has usually a specific number of registers as working memory where it saves the
currently processed data (note that various CPUs have different numbers of registers, i.e.
Pentiums 4 have 128, older ARM CPUs have 37, etc.) Those registers are closer to the
CPU than the so called L1 cache. A CPU directly operates over those registers. Registers
usually have a size of 32 bits (or 4 Bytes), but a new generation of computers with 64 bit
registers are already available on the market nowadays.
1) Your script code is not being executed as is, it needs to be translated first. Since RGSS
Ruby is an object oriented language (see chapter 8 for more information), the
translation is even more complex. In a couple of translations your code gets usually first
translated into a more simple code (with usually more lines of code) in which i.e. your

loops are completely simplified. In the end the code is translated into assembler
commands and then into machine code. Some interpreters without built-in optimizers
can even translate code directly into assembler code which takes less, but makes the
CPU work slower as redundant commands are being executed.

2) When you use a function call, this is what happens in your PC:
- All commands in the pipeline need to be truncated, which causes losing 20 CPU
cycles on a Pentium 4 and that means the method call already takes the same
amount of time like 20 summation operations.

- The CPU stores the address of the current command position into the RAM onto the
stack which takes 10 to 15 times longer than letting the CPU add two numbers.

- Now all arguments that are passed onto the function need to be added onto the
stack as well which will take some CPU time again.

- Now the so-called program counter (which determines the address of the next
command to be executed) is being set to the address of the function’s translated
code.

- The pipeline gets filled and that means the CPU needs to wait for another 20 cycles
until the next command can be executed.

3) Now the function gets executed. When the end of the function is reached a very similar
process is being executed to restore the old location so the old code can be continued.
Also any returning values are being stored onto the stack, so the CPU can access the
results of the function call after it has returned to the position where the method
originally was called from. Again the pipeline needs to be filled with the pending
commands where it stopped before jumping to the function’s address.

All of this might give the impression that functions are a bad concept, but this is not true. If
there were no functions, there would be code repeating which needs MUCH more RAM. It’s
more economical to spend some CPU time for this instead of very much RAM. Also, this
makes programming easier. The next two codes are completely idiotic.

def sum_two_numbers(a, b)
 return a + b
end

class Scene_Load < Scene_File
 def commandnewgame_partysetup
 $game_party.setup_starting_members
 end
end

Not even a very bad programmer would use something like this. There is absolutely no
excuse using something as bad as this, especially since all what the second code does is
an unnecessary reroute of a method call. The only situation where it makes sense to make
a one-line method is re-rerouting variables from within other classes so the code is easier
to read. So avoid use if anyhow possible.

class Game_Enemy
 def gold
 return $data_enemies[@enemy_id].gold
 end
end

For more information about CPU architecture, see chapter 8.

6.3. Too many pointless and useless Commands

I just love stuff like this. People who consider themselves great scripters and somehow
managed to fool other people into believing the same, yet they need 20 lines of code to
make something work that could have been done with 10. It wouldn’t be so bad if it was not
obvious that it could have been done. I will not reveal the name of the author of the
following code, but I think you know it already. The code will allow you to switch the party
leader by cycling through all party members if you press L or R (Q or W). Take a look at the
next code and most probably you will find a way to shorten it yourself.

class Game_Party
 def shift_forward
 @actors << @actors.shift
 $game_player.refresh
 end
 def shift_backwards
 @actors.insert(0, @actors.pop)
 $game_player.refresh
 end
end
class Scene_Map
 alias_method :s____partycycling_scnmap_update, :update
 def update
 if Input.trigger?(Input::L)
 $game_party.shift_forward
 elsif Input.trigger?(Input::R)
 $game_party.shift_backwards
 end
 s____partycycling_scnmap_update
 end
end

Isn’t it just beautiful? Oh yes, it is. The following code will do the same thing.

class Scene_Map
 alias upd_ptc_later update
 def update
 if Input.trigger?(Input::L)
 $game_party.add_actor($game_party.actors.shift.id)
 elsif Input.trigger?(Input::R)
 $game_party.actors.unshift($game_party.actors.pop)
 $game_player.refresh
 end
 upd_ptc_later
 end
end

This takes us to the point of this chapter: Use things that are already there. I used the
add_actor method from Game_Party which has already the $game_player.refresh call

included. Since there is no method to add an actor at the first position of the party and shift
each actor by one position, I had to remove the last actor (pop) and put him at the first
position (unshift) (see 3.3. for more information about working with arrays). Use what you
already have, don’t write new stuff if you don’t need it. A method call is a very expensive
operation, especially a one-line method (see 6.2. for more information). Note how I was
able to manipulate the @actors array by calling the methods pop and unshift even though
the @actors array is a private instance variable in Game_Party, it’s only available for
reading, not for writing. That means you can do $game_party.actors, but you can’t do
$game_party.actors = something (see 7.8. for more information).

6.4. Too much SephirothSpawn

Please see 6.2., 6.3., 6.5. and 6.7. for more information.

6.5. Avoid being an Idiot

What I understand under being an idiot when scripting is first off all ignorance, secondly
arrogance and lastly being obnoxious. If you are neither, you can skip this part.
If somebody has discovered a bug, LOOK INTO IT. Don’t just say “It’s your fault, my script
works fine.” It’s fine to say “Try getting the newest version first.”, maybe you have fixed it
already. If he’s using the newest version already, look into it. There are often situations
where you haven’t considered a condition or where a line is just faulty. It is also a very
common occurrence that changing code (even if it was actually a bug fix!) causes new
bugs. The bigger and more complex a script the more likely a bug is to appear. The more
scripts you have, the more likely that they interfere with each other. Making your own
scripts compatible with each other will turn out quite handy if you have released 5 or more
1000+ lines scripts or scripts that have a very complex structure (i.e. like an encoder or
encryptor).
If somebody asks you to help him with a script that is not yours, you don’t need to turn the
person down in a mean way like “Huh?! This is not my script. Ask the maker. Hmpf, kids
these days!” It’s not hard to just type down the reason even if you just make it up. Of course
it’s better to ask the maker, but you can always say “I can look into it, but I can’t promise
anything. Your best chance is to ask the maker himself, he should know his script best.”
This has nothing to do with scripting, it has to do with having manners. The worst thing that
can happen is to see a well-known and respected scripter do something like this. A
disappointment that crushes your world into pieces that makes you wanting to never
become like this.
Nobody will use your scripts if you’re being rude to them. You’re not the only RGSS scripter
in the world. And if you are reading this e-book, you’re most probably not one of the best
either.

6.6. Re-invent the Wheel

Many might want to avoid that, but why?! There is a good point for each scripter to re-
invent the wheel. The point is NOT that you have it easier and to have all you need to make
a good script, the point is to learn something. If you just use the code of other’s, you won’t
get far. Your scripts will be unoriginal, debugging will be a nuisance due to your lack of

understanding what actually happens in RGSS and your scripts will lag, because the other
scripter might have messed up with his tool for you or they might just lag, because you
don’t know how to fix it. Don’t get me wrong, tools are good, but try to create your own
tools, not to use too many tools from other scripters. A much better idea for getting a tool
would be to get it and check out the code instead of using it. You might learn something.
You like SephirothSpawn’s slant bars? Or maybe Trickster’s? Or maybe mine? Why don’t
you try it yourself? Get each of our codes, compare them, check out what they do and how
they do and (maybe most important) why they do the things they do. Then try to make your
own. Yes, you just have re-invented the wheel, but it turned out good you did. You have
learned how to work with a bitmap and create bitmaps via script.
Another problem is the problem “But there IS already a script for this. Why should I make
another one? It will be the same…” Wrong. Your codes will never be the same. It might turn
out similar, but never the same (except you copy-paste, you thief!). Your ideas of how i.e. a
party switcher should look like or how it should work will most probably be completely
different from somebody else’s ideas. Your main goal in this case should be “I want to
make it better than that other guy.” Learn from the mistakes others have made. Improving
doesn’t only mean to add functions or make it look different. Improving can also mean to
get rid of useless functions and add really useful stuff instead.
On the other hand, making it easier for other scripters by making a complex tool is fine. But
just making a few methods for them won’t help them much in improving. Of course this
applies to something like making a collection of methods and letting everybody just use
what he likes, not to the case when somebody is asking “How can I do this and that? Can
you help me?” Ask, it costs nothing and you will learn something.
I am always proud of a scripter who has asked me for help, maybe even for half of the
script, but in the end he makes something on his own and mostly in a completely different
way. I am proud that he has asked me, but in the end, he was his own teacher. Why did it
turn out like this? He asks me for one thing, then another, then another, etc. and during that
he gathers enough knowledge that he realizes his approach wasn’t such a good idea as he
could have made it much easier and better. This scripter could have just used my script,
but he didn’t. He learned how it works and wanted to try it out himself.

6.7. Enforcing Standards

DO NOT ENFORCE STANDARDS! Having a standard is fine, using a standard is fine, but
enforcing a standard is the Microsoft way to do it: People have to use it else they are just
screwed. People are beings who have ideals and individual characteristics. Enforcing your
standard WILL make you many enemies who do not agree with your philosophy and make
many people not using your scripts out of principle or just because they cannot being
bothered to implement your standard into their games, because it is none and doesn’t work
with all the other scripts. And you’re turning out to be an ignorant asshole by always saying
“You need this, you need that to make my script work, because it’s the standard and I don’t
go out of the standard.”, especially if it’s not a standard. For more information how to avoid
begin an idiot, see 6.5..
Don’t get me wrong, standards are fine, but self-made standards surely are not. Standards
do not make any sense if not EVERYBODY is using and following them. If you don’t have
the authority to enforce a standard, don’t do it!
Interesting side notes: SDK (Standard Development Kit) is an ironic name, because it actually doesn’t fulfill
the definition of Standard. There is no such thing as standard dependent. The SDK has only caused more

incompatibility issues so far by separating SDK and non-SDK scripts, no matter if they were aliased (for more
about aliasing see 2.1.) or not. SDK 2.x is much more incompatible, even with SDK 1.x scripts. Even today
there is no standard defined for programming as it is a quite creative industrial branch. Today only several
methods and approaches exist for programming. Standards don’t make sense if not everybody accepts and
uses them. This cannot be achieved by enforcing standards, especially if you claim your standard to be
flawless even though it’s obvious that it isn’t. Setting standards should not be attempted by people who are
not professionals in this area and who do not have the authority to do so. If the best of the best could not have
created a standard within over 50 years of programming, how are a few amateurs supposed to be capable of
doing so?!

6.8. Scripts the World doesn’t need

This is a matter hard to explain. Examples might be the best solution to understand what I
mean:
Instead of dying from HP reaching zero, when SP reach zero, the hero dies.
Sometimes it’s not easy to judge, but sometimes it’s so obvious. The main reason in not
making a script is that nobody’s ever going to use it. Would you use this script? I wouldn’t.
Even from the view of the player I wouldn’t want to see this function in a game. It would just
annoy instead of adding spice to the game. Think about it.
The human mind is capable of inventing anything, even within abstract relations and that
means they don’t have to make sense. There are just scripts the world doesn’t need.
Another similar problem is the problem with scripts having pointless options. Would you
ever want a skill to target 2 random heroes, the hero next one of them, the enemy you
choose and one random enemy next to the enemy you’ve chosen?! Sorry, but this is idiotic.
Think about if a script really has a point to be made and think about how much sense it
does to include options and which ones for that script. It’s fine to have a few vital options for
the user to customize it and/or make it maybe compatible with other scripts. But having too
many options will only confuse the user, prevent him from using your script and most
probably giving you a headache implementing them.
Imagine a 100 lines script with 30 options (that means actually only 70 lines of code). Does
the user really need to set up if he wants to have a 13 or 14 frames transition, since it looks
annoying if any other value is used anyway?! If there really is a user who needs this option,
he will ask you and you will tell him to change just a line or two and it will work instead of
you losing half an hour implementing this option and three other ones nobody’s ever going
to use. It’s always better to have too few options than too many. If people need some
special options that many would use, they will tell you. Good software development can be
achieved through continuous work with the clients more easily than just you making it
initially work with anything. You will simply waste your time for nothing.
Most people don’t even read instructions and don’t even know of what your script is
capable of, especially if you include 30 pointless options. It’s pretty discouraging if you get
the new script that makes you shadows and reflections and see 5 pages of instructions
with 50 options that don’t make sense at all. Normal users are not scripters, they are just
happy with the black box you give them and it works fine by setting up just three or four
options. Stick to quality, not quantity.

6.9. RAM or CPU?

This chapter shows you that you are not superior to other people. It shows you that it’s not
cool to make your script big if it’s unnecessary. Don’t make big scripts just for the sake of

being big and don’t unnecessary process data. If you’re a good scripter, it doesn’t mean
that you’re scripts need to be big, but to be small. It also doesn’t mean you’re better than
other humans. Respect them as they respect you. If nobody is using the script you have put
effort into, because you’re being an idiot and having no social manners, there’s no point for
you to script for others anymore. Script for yourself and enjoy your loneliness and ego
yourself, they don’t need it.
Ah right, I forgot… In this case use your both, your CPU and your RAM as much as
possible. Process things before you act and store important things like social manners. You
can store this into your RAM right now: You are not better than others, whatever you may
think. Keep a low profile and be quiet. You will be praised more and earlier if you stay
humble. If something goes on your nerves, just ignore it. Someday when you’re better, you
will realize it doesn’t matter anyway. Or you can go and start a revolution if it does matter.
That’s one thing that can never be too late.

7777. . . . Hints and TricksHints and TricksHints and TricksHints and Tricks

This chapter will show you some interesting ideas how to make your scripts work faster, be
more compatible, be shorter and on top of that have a cool and professional looking code.
Most probably you will enjoy this chapter most as it teaches you actually something to
script and doesn’t teach you the theory behind all of it too much. This chapter also includes
a lot pf practical experience.

7.1. Pen on Paper or train your Brain

Have you ever tried making a script straight out of your head? Well, I have. I did it actually
a lot of times, almost every time I am working on a script. There’s a reason why I have
chosen this “hint and trick” as first. The reason is that everything starts here, in your head.
First there was the idea and in the end there was the script. What’s in-between is for you to
decide.
Let’s say you have an idea and you want to make your script work this way. You start
scripting. Suddenly you get into a dead end, since your idea somehow doesn’t work. This
happened to me with my first bigger script: The Soul Rage System. I was working on it two
days until I had to enough. I realized that it would take less time to use a different approach
and start the script almost completely from scratch again than removing the last couple of
problems and bugs that were causing me a headache.
The point here is that I didn’t know the battle scripts and I tried an own approach while I
could have simply re-used the already existing scripts for more convenience and better
compatibility. Or if I had first put everything down on paper, most probably I would have
come to that idea earlier. Since my head was busy figuring out how to make it work, it had
no time to think about how to make it really work. I was so concentrated on the details that I
couldn’t see the system as a whole. You see, the advantage of putting everything on paper
is that you don’t have to keep it in your head all the time. The human mind is capable of
memorizing between 5 and 9 unrelated memories in one moment. It works similar to RAM
in your PC. If something new needs to be put into the RAM, something old either needs to
be deleted or stored on the Hard Drive for later. It’s similar with our brain. Those unrelated
memories are first stored into short-time memory in which they can stay for about 30
seconds before they get deleted. Through repetition of one memory it gets stored into long-
time memory. This is how human beings memorize and learn things.
Now imagine what happens if you have those 5 to 9 unrelated memories and then comes
another and then another and so on. It’s hard to keep track of all of this unless you switch
those memories between current, short-time and even long-time memory. This process is
quite exhausting and most probably you will have to start over a couple of times (i.e. “Ok,
let me see again… This is like that and that works…”). You have only two options. Either
you just work it out this way and your brain will stay in form or you can just be more
systematical and put everything on paper to create a program flow which you can easily
track, modify and overview.
When we get older our brain starts to be more lazy and lazy. It’s because of the exhaustion
of memorizing things and thinking during the years. The human brain does more work in
the first three years than in all the rest of its life. The brain of a newborn child is
hyperactive. During the day it literally absorbs all kind of information and during the night
while the child is asleep, those informations get post-processed and memorized. The only

reason why we believe to become smarter while we age is because we earn experience
and through this we learn how to systemize our thoughts and doing, so it’s not as
exhausting as before, mostly even more effective. With fewer resources, we can do more.
You can systemize your thoughts in your imagination, imagining colors, shapes, program
flows, code and everything else or you can put it on paper. As already mentioned, keeping
everything in your head is more exhausting, but also keeps your brain in shape. I
recommend using this method as long as you feel capable of using it. When it becomes too
much (which will be when you turn 20 or 21), your best bet is to switch the tactics. Start
using pen and paper for a change. You will be surprised how much easier it will suddenly
be to come up with ideas, yet you will still have ideas. It can be especially useful if you have
to write down (or draw down) all possible scenarios if you have like 20 of them.
On the other side a common problem of people who work too much on paper is that they
start being less creative. Their brain gets lazy. So when you feel that you are not getting
any good ideas anymore, try switching tactics again, it might be just what you needed. If
you always use the systematical approach, your brain gets used to one and the same
pattern which it already knows. That’s why it gets lazy, there’s nothing new to learn or to do
(beside the fact that it gets boring as well). The best method, of course, would be a
combination, but it’s up to you to decide if you will constantly work with half power or use
your brain’s potential as much as possible and then giving it a break. Take into account that
the constant method could give only moderate results. You could just become tired while
scripting constantly even though not with full potential.
All in all, you have to decide which you will trust more: Your imagination and creativity or
your eyes and experience. Or will you be smarter than everybody else and use them both?

7.2. “Game_System” is your save data’s best friend

How many times has it happened that some configurations need to be saved and you use
something like this here?

$dns = My_new_DNS.new
class Scene_Save < Scene_File
 alias write_save_data_my_new_dns write_save_data
 def write_save_data(file)
 write_save_data_my_new_dns(file)
 $dns = Marshal.load(file)
 end
end
class Scene_Load < Scene_File
 alias read_save_data_my_new_dns read_save_data
 def read_save_data(file)
 read_save_data_my_new_dns(file)
 Marshal.dump($dns, file)
 end
end

Actually be happy if you made it this way, since you used aliasing… But this is not a good
idea. You will destroy all your old save files in a way they will cause a crash as soon as you
try opening them in Scene_File. This is what would be much smarter to do:

class Game_System
 attr_reader :dns
 alias init_my_new_dns initialize
 def initialize
 init_my_new_dns
 @dns = My_new_DNS.new
 end
end

The DNS data will be saved along with the instance of the Game_System class which is
already saved by default. The worst that can happen is an undefined method “whatever” for
nil:NilClass error, since it was tried to execute a method on $game_system.dns, but @dns
is still uninitialized in the save file. It will load normally, it will work normally until the script
tries to execute a method. Here is an alternate solution to prevent EVEN save file
corruption:

class Game_System
 attr_reader :dns
 alias init_my_new_dns initialize
 def initialize
 init_my_new_dns
 init_dns
 end
 def init_dns
 @dns = My_new_DNS.new
 end
end

This code might first seem inefficient due to a one-line-method. To clear things up: It IS
inefficient! But look at this little expansion here:

class Scene_Map
 alias main_my_new_dns main
 def main
 $game_system.init_dns if $game_system.dns == nil
 main_my_new_dns
 end
end

A save file that didn’t have DNS before would initialize it as soon as it is loaded. I
personally do not use something like that. Old save file corruption is a sacrifice I am ready
to take if I can avoid one line methods and messing with scene initialization. I value higher
compatibility with other scripts more than keeping old save files. You could use this code as
well:

class Game_System
 attr_accessor :dns
end
class Scene_Map
 alias main_my_other_dns main
 $game_system.dns = My_other_DNS.new if $game_system.dns == nil

 main_my_other_dns
 end
end

Interesting enough that you wouldn’t need to alias the initialize method in Game_System
anymore. But the price might be higher than it seems. The DNS will be loaded the first time
the Scene_Map is being executed, not earlier and this leave time for a bug and
incompatibility issues with other scripts. The shortest solution is not always the best.
You are not limited to the Game_System class. Use it mostly for configurations and similar
things. If you wish to add a new attribute to your party like an array of party skills, it would
be a better idea to add this array into the Game_Party class instead so the engine and your
scripts are more congruent.

7.3. Boolean Algebra

First be aware that in RGSS Ruby there are several notations for one and the same thing.

not a = !a (complement)
a and b = a && b (disjunction)
a and not b or not a and b = a ^ b (exclusive conjunction)
a or b = a || b (inclusive conjunction)

complement = NEGATION operation
disjunction = AND operation
exclusive conjunction = XOR operation
inclusive conjunction = OR operation

The left ones are called ANSI Syntax, the second are called Classic Syntax. I preferred
ANSI Syntax, since it makes the code more readable. I have switched to Classic Syntax,
since there is a bug with the interpretation (see 7.4. for more information) and I suggest you
to do the same. NEGATION has the highest priority, next is AND, then comes XOR and OR
has the lowest priority. You can manipulate priorities if you use () brackets. These are the
properties of Boolean Algebra:

a and true = a - neutral element true
a or false = a - neutral element false
a and b = b and a - commutative
a or b = b or a - commutative
a and (b or c) = (a and b) or (a and c) - distributable
a or (b and c) = (a or b) and (a or c) - distributable
a or not a = true - complementary
a and not a = false - complementary

These are the Boolean Operations:

a or true = true - domination
a and false = false - domination

a and a = a - idempotent
a or a = a - idempotent
not (not a) = a - involution
a and (not a or b) = a and b
a or (not a and b) = a or b
a and (a or b) = a - absorption
a or (a and b) = a - absorption
a and (b and c) = (a and b) and c - associability
a or (b or c) = (a or b) or c - associability
not (a and b) = not a or not b - De Morgan’s Law
not (a or b) = not a and not b - De Morgan’s Law
(a and b) or (a and not b) = a - simplification
(a or b) and (a or not b) = a - simplification

You don’t need to know all of those, you can conclude them by remembering only the
properties. Use them well, they will help you in coding.

7.4. The evil Bug in “if” Branching

During my time I have found one serious bug in RGSS’s interpretation of conditional
branching. Just think about this piece of code here? What do you think? How will RGSS
REALLY interpret it?

print false and true ? 1 : 2

If you think it will interpret it as if there is written p (false and true) ? 1 : 2 which would cause
the evaluation of (false and true) first, then you’re wrong. The result of this line will be a
window with false written on it. Take a look at this example:

a = nil
b = true
c = (a != nil and b ? 1 : 2)
print c

Now you would assume the result to be 2, since a is nil and therefore the condition is not
fulfilled. The print command will print out false again. Why? I don’t know. There seems to
be a problem with comparisons, since there ARE () brackets and that means the
parenthesis is fine. The next code would work fine and print out 2.

a = nil
b = true
c = (a != nil and b) ? 1 : 2
print c

Now check out this code:

a = nil
b = true

c = 3
if a == nil or b and c == nil
 print 1
else
 print 2
end

What do you think will be printed? You think it will be 2? You are right. Again a bug as it
seems. Oddly enough the next code will work fine and print 1, even though all that was
changed is the position of two conditions:

a = nil
b = true
c = 3
if a == nil or c == nil and b
 print 1
else
 print 2
end

There seems to be a problem with evaluation of conditions that include false and and. The
actual bug is a problem with priorities when false is one of the values of the comparisons. If
you use && and || instead of and and or, you will see a big surprise: IT WORKS FINE! The
reason is that && has a higher priority than and and || has a higher priority than or. Here are
two last examples to prove this theory:

a = nil
b = true
c = 3
if b and c == nil or a == nil
 print 1
else
 print 2
end

a = nil
b = true
c = 3
if c == nil and b or a == nil
 print 1
else
 print 2
end

Both codes work fine. I suggest you use () brackets each time to go sure, take a good look
at your conditioning and use the () brackets when something like this could happen, work
normally and use the brackets only if your conditions start behaving funny or you can just
switch to Classic Syntax like I did (see 7.3. for more information).
Keep in mind that I encountered this bug numerous times, I only wasn’t aware that he was
the cause until recently. Usually I put all my and conditions at the first place and after them
the or conditions, so I would say I didn’t encounter it too often (see 7.5. for more

information why exactly I used this order of the conditions). Note that this bug is in all
RGSS dynamic link libraries (dll) released up to this day.

7.5. First this or that? – When “if” goes crazy

A nice optimization of code can be achieved at conditional branching. You can imagine that
an if statement is read from left to right by RGSS. If the first condition is true and there’s an
and before the next one, the next one will be read as well until a statement results in true or
false. An interesting property is that a statement will automatically result in false if all
conditions are connected by ands and only one condition results in false. Now when you
consider that RGSS checks conditions from left to right then it would be wise to put the
condition that is false most often of the time at the left-most position. That way RGSS
needs to check a minimum number of conditions to skip that branch. It’s a similar story if
conditions are connected with ors. In this case put the condition that is most often true at
the left-most position. That way if the first condition is true, the branch can be executed
without the need to check all the other conditions first.
Another method how to decrease condition processing time is to use the advice given
above and additionally put methods at those places where it will be check at least.

if moving? and not @solid
…
def moving?
 …
end

The method moving? will be checked first, then the class variable @solid. This is wrong.
This code is better:

if not @solid and moving?

In this case the method moving? will be checked only when @solid is false. Moving might
be more often false than @solid true, but consider that moving? could be a method with 20
lines of code. Even in the case that @solid was false only every 40 frames, it would still be
an improvement, because a comparison is executed faster than a method with 20 who-
knows-what-they-do lines.

7.6. The Trick with “unless” – De Morgan’s Law

Note that De Morgan’s Law is mere one part of Boolean Operations (see 7.3. for more
information).

if not a and b

if not (a and b)

unless a and b

unless a or not b

To keep it simple, I will come to the point. Code 2 and 3 are exactly the same, code 1 and 4
are exactly the same. unless something is the same as if not (something). De Morgan’s
Law as one of the Boolean Operations tells you following:

not (a and b) = not a or not b

not (a or b) = not a and not b

This Law is universal for any number of arguments:

not (a and b and c and ... and z) = not a or not b or ... or not z

not (a or b or c or ... or z) = not a and not b and ... and not z

To apply this one RGSS together with using unless:

if a and b or not c = if not ((not a or not b) and c) =
 = unless (not a or not b) and c

Note that and has a higher priority than or, so the or part now needs to be put in ()
brackets. Though, you can still make it look different than the example above:

unless (not a or not b) and c = unless not (a and b) and c

Keep in mind that a is the same as not (not a). A good advice would be to learn the
Boolean Operations, so you don’t need getting a headache each time you need to use
them.

7.7. Comparisons

First off, it’s not the same which class instances you compare. Have you ever noticed that
something like 1 == 1 would work out, but something like Sprite.new == Sprite.new
wouldn’t? The reason is as follows: There are two types of objects. The first types are
simple to understand. Any instance of a class that can be considered as an original. If you
create two sprites and compare them with ==, you will get false as result, since those two
objects are not the same one. This usually works for all classes, except the second type.
Those classes usually cannot be loaded into variables as instances and each of those
classes with the same value are considered equal. As all numbers are instances of the
class Numeric, 1 == 1 will result in true. Those ones are not originals. Each number will
give the result true if compared with another number of the same value. Also an interesting
attribute is that 1 == 1.0 would also result in true. Non-Original classes are all Numeric, the
String, NilClass, TrueClass and FalseClass classes. You should also consider that using
something like bitmap == bitmap.clone will usually result in true as well.
The reason for this is how the classes actually work. Original classes are being created in
the RAM and a pointing address is being returned to where in the RAM the instance was

stored. Passing on such variables as arguments into methods will cause that this very class
instance is being operated. This is called call by reference while the other type is called call
by value (see chapter 8 for more information). Call by value creates copies from the
objects when they are passed on as arguments into a method. Modifying such a copy
within a method will have no effect on the real class instance. This is why bitmap ==
bitmap.clone could work out as the clone method only does a so-called shallow copy.
Shallow copy, which would be the opposite of deep copy, only copies the pointers, but not
the variables which they point to.
Note that using comparison with an array or hash causes each value to be compared with
the other. In other words if the comparison or all elements at the same positions or the
same keys results in true, then the arrays or hashs are equal as well.

7.8. Instance Variable Access aka Encapsulation

Have you ever noticed special definitions like attr_reader, attr_writer and attr_accessor?
Check out the next two codes.

class Hack_Noob
 def initialize
 @tools = Hacker_Tools.new(‘n00b’)
 @log = Data_Log.new(‘’)
 @hacked = []
 end
 def tools
 return @tools
 end
 def log=(data)
 @log = data
 end
 def hacked
 return @hacked
 end
 def hacked=(ary)
 @hacked = ary
 end
end

class Hack_Expert
 def initialize
 @tools = Hacker_Tools_XP.new(‘XP’)
 @log = Data_Log.new(‘deny 1337 5p34k’)
 @hacked = []
 end
 attr_reader :tools
 attr_writer :log
 attr_accessor :hacked
end

You might not be able to see the difference here. Well, there actually is none: The codes
work exactly the same. The attr_something are special methods in RGSS Ruby which allow
you to quickly define public instance variables. attr_reader will allow reading the variable,

attr_writer will allow writing into the variable and attr_accessor will allow accessing the
variable which means reading and writing.
But be careful, sometimes encapsulation is necessary. Let’s take the sp= method from
Game_Battler as an example.

class Game_Battler
 def sp=(sp)
 @sp = [[sp, maxsp].min, 0].max
 end
end

So, what does this method do? It defines how an sp= call should handled. The value will
not bluntly be stored as @sp, but it will be corrected first. It will not go under 0 and not
above maxsp (which is a method as well). Keep in mind that using an attr_accessor :sp
after the definition of this method will cause it to be rendered obsolete like there has been a
redefinition of the method (which technically has been). It is possible to alias a method (see
2.1. for more information) that has been defined over attr_something. This code will work
out just fine.

class God < Heaven
 attr_writer :new_prayer
 alias new_prayer_auto_fulfill_for_good_people new_prayer=
 def new_prayer=(prayer)
 if rating(prayer.person) == ‘good person’
 fulfill(prayer)
 elsif rating(prayer.person) == ‘bad person’
 @new_prayer = prayer
 end
 end
end

7.9. Powerful implemented Iterator Method “each”

What would you say if I told you I could speed up the loops in your script by let’s say up to
200%? Well, I can. As RGSS Ruby is an interpreted language (see 1.1. for more
information), the for i in something needs to be interpreted as well which is slower than the
compiled each methods. The syntax of the each iterators can be confusing in the
beginning, but as soon as you understand what is what, it’s as easy as the for iterator. The
following for iterator definitions are equal to the given each iterator definitions below.

for i in start..end_inclusive
 ...
end
(start..end_inclusive).each {|i|
 ...
}

for i in start...end_exclusive
 ...
end

(start...end_exclusive).each {|i|
 ...
end

for element in ary
 ...
end
ary.each {|element|
 ...
}

for i in 0...ary.size
 ...
end
ary.each_index {|i|
 ...
end

for value in hash.values
 ...
end
hash.each_value {|value|
 ...
}

for key in hash.keys
 ...
end
hash.each_key {|key|
 ...
end

In the examples above you should see that the iterator definition change from for to each
looks like this.

for i in something
 code
end
something.each {|i|
 code
}

Of course you can use a do … end instead of { … } as they are identical.

for i in something
 code
end
something.each do |i|
 code
end

The explanation of each each iterator is quite simple. each iterates through all array
elements or all numbers of a defined range just as the for iterator does.
each_index automatically iterates through all indices of the given array. The most
interesting part here is that due to the conversion to a range (0…ary.size) in the for iterator,
each_index can be faster up to 200%.
each_value iterates through all values of a hash and is about than 50% faster than
values.each as the conversion of the hash to an array using values does not happen.
Same goes for each_key. It is about 50% faster than keys.each as the conversion of the
mapping data to an array does not happen. So, if you want to speed up your script,
exchange for iterators with each iterators
There are more interesting methods, see the Enumerable module in the RMXP Help File.

7.10. Bug Hunter

Debugging a script or program is an art for itself. Did it ever happen to you that you tried to
track down a bug through half of all RTP scripts for 2 hours? Well, it has to me.
The first step to repair a bug is obviously to cause one. You first need to find out which are
the circumstances of the bug. Does is happen during battle when you try to use a skill? Or
does it happen on the map when a text message should be displayed? Or does that option
in your CMS just not work? To find a solution for a problem you first need a clear definition
of the problem. I will use an example of a weird bug I have been hunting once. Suddenly
my character Lucius couldn’t be inflicted with a status effect anymore. It didn’t work with
skills and it didn’t work directly with events.
The second step is to find the cause of the bug. You have to find out which piece of code
doesn’t work right and how it conflicts with everything else if it does. This can be a very
painful process which could take hours if you use the wrong approach. The worst scenario
is that you need half an hour to locate the bug’s cause by using a systematic approach.
Let’s think about it. What makes Lucius different from all the other characters? Then it
came to my mind: Lucius is able to use either two one-handed weapons or one two-handed
weapon. Could it have been that I have messed up something when I implemented this
system? There was a lot of room for this, since I had aliased quite a number of
Game_Actor methods to make this system work. But this conclusion is still is of no help. To
save my time by avoiding looking for the cause of the problem where isn’t, I first made a
copy of my Scripts.rxdata and removed the two-onehanded/one-twohanded system.
Suddenly it worked again. That means this system really is causing the bug. So I’ve put a
couple of controls printings in the skill_effect method of Game_Battler. I let the script print
out Lucius’ states array a couple of times during the method execution. I noticed that it just
didn’t change after the call of the add_state method. I have also checked a couple of other
things like printing out the skill’s plus_state_set. So I have taken a look at the add_state
method. But I wasn’t able to find anything wrong about it. After about half an hour of more
control prints and going trough the whole Game_Actor class I finally found the cause. The
problematic method was equip. Yes, the cause of that nasty problem which I had for quite
some time was a method that had almost nothing to do with status effects. The only call
related to this area was update_auto_state and this was the problem. I can’t remember
exactly what the problem there was, but if I remember right, it was the built-in RGSS
conditioning bug (see 7.4. for more information) that caused me the problem as some
simple parenthesis and some special exception handlings fixed it.

The third step is to model a solution. Sometimes it’s just a typing mistake, sometimes it’s
just a little problem that can be fixed by changing a few lines slightly. But sometimes it’s a
bug that requires remodeling a whole subsystem or method, since the approach you were
using was just not working without a bug or if that method is written quite messy, so a bug
is almost not to be avoided.
The fourth and last step is to implement the solution and test the script again. Keep in mind
that adding new things and editing old ones is the most common time for a bug to appear.
Let’s say you’ve found a bug in your minimap script. You fix it by editing a conditional
branch. Suddenly you find out there is another bug. What happened? Your edit of the
conditional branch wasn’t fully thought through and you didn’t make it right so another
(mostly similar) bug appeared.
Here is the syntax which you need to use to quickly print out some data.

p data
p data.inspect
p “#{data1} - #{data2}”
p data1.to_s + ‘ - ’ + data2.to_s
p “#{data1.inspect} - #{data2.inspect}”
p data1.inspect + ‘ - ’ + data2.inspect

Note that the first two will give the same print out, the third and fourth will and the last two
will. The last two work on the same principle as the first two do. If you use variable
embedding into strings or the to_s method, it will print out the data often differently than if
you use the inspect method. I recommend the inspect method. Note that you can leave out
the inspect method if you use only one variable as p automatically does the conversion via
inspect. See the RMXP Help File for more information.
But sometimes using simple print outs doesn’t help much. If your system requires is a
graphically dependent system (i.e. a passability grid), it might be a good idea to use a sprite
with a bitmap of size 640×480 to draw some things on the screen so you can quickly see
what’s going on in your script. You can take a look at my Quick Passability Test, included in
Tons of Add-ons to get the idea of how it is done. This is usually useful for bug hunting as
well as during the development itself.

7.11. Global, Local, Instance Variable or Constant?

First off, you need to know how define each type of variable. Global variables have their
variable names beginning with a $. Local variable have a first non-capital letter. Instance
variables have their names beginning with an @. And finally constants have a capital first
letter. What’s the difference between all of these? Global variables are visible in every
script. Instance variables are a little bit more limited. They are visible within a class, but not
outside of it. Though you have the possibility to make them public instance variables by
using the three attr_something methods (see 7.8. for more information). You can access
them from anywhere. Local variables are only visible within the method or block they were
created in. They don’t exist outside of this method or block (except if they are returned or
passed on as argument into another method or block). Constants are visible within the
environment they were created in. If you create a constant outside of every class definition,
you can access it from anywhere just like a global constant. If you create it within a class
definition, you can access it directly if you are within the class or using the scope operator ::

(see chapter 8 for more information about Object Oriented Programming) by using
NAME_OF_CLASS::NAME_OF_CONSTANT. Same goes for modules. The values of
constants cannot be changed during the execution of the script.
Automatically raises the question when to use each type. Constants are great for constant
configurations like i.e. an array of IDs for skills which can attack all enemies and party
members at the same time. Global variables are best for some special things like turning
on/off a script locally where these changes don’t need to be saved (see 7.2. for more
information) or for script presence recognition to enhance compatibility (see 2.2. for more
information), but they are to be avoided if possible. Local variables are great for temporary
data. Instance variables are used for class attributes and special flags where it would be a
waste to use global variables.
Another question that raises here is “Why not just use global variables everywhere to save
oneself the trouble?” The answer is very simple. It is highly inefficient. A CPU works that
way that it only can store a specific number of variables for current work. If every variable
was global, the CPU would spend very much time on storing and loading those variables
from the RAM which would cause an incredible speed loss (see chapter 8 for more
information).

7.12. Inside-Outside or Outside-Inside

The approach you are using to make your script work can make a big difference. There are
two main approaches. By using the first (also called From the Inside to the Outside) you are
attempting to make all the subsystems work and then move on into combining those
components into bigger systems and so on. This approach can be useful as specific
subsystems can be tested quite conveniently before they are integrated into the bigger
system. The bigger system, then, can be tested quite conveniently as well, since it’s safe to
say that the subsystems are working. But this approach is only useful for smaller system. In
bigger systems it could easily happen that something wasn’t considered and one
component needs to be rewritten.
In bigger systems it is usual that the From the Outside to the Inside approach is used.
Using this approach you first define the outer systems like graphical interface. With a
working graphic shell everything is easier. Every subsystem can directly be integrated into
the big system and makes incompatibility bugs between those two types of system less
frequent. The disadvantage of this approach is that the system can be less flexible. A
change on the outer system mostly has the consequence that each subsystem needs to be
changed as well. All of this increases the chance of a bug. That’s why this is suited for
systems which have an exact and precise definition: In big systems. If a system is defined
and thought through very good, many changes won’t be necessary. The disadvantage of
this is that usually more time needs to be invested into planning than scripting. It’s hard to
make it work if you just head-start into scripting. Decide for yourself which approach might
be the best for your system.
My personal advice is to use the approach Inside-Outside as the only script I had to use the
Outside-Inside approach was Blizz-ABS and the unfinished Semi-TBS. For the Semi-TBS I
had quite a good specification of the outer system. Details came later when I needed them.

7.13. “Uh, what does this knob do?”

Most probably you have often encountered something in the RTP scripts that you didn’t
understand quite well. The key in learning things yourself is to experiment. If you are
unsure about how a method works and which results it gives, you can either take a look at
the RMXP Help File or try experimenting with it yourself. Often you won’t find in the Help
File what you are looking for and you will be forced to experiment with it if you want to find
out more. Keep in mind that experimentation is a very time consuming learning process,
though the quality of the experience you earn through it is of much better quality than if you
just copy-paste things. See 6.6. for more high quality script learning experience.

7.14. About Superclasses and Mix-ins

First of all you need to understand the principle of Superclasses and Subclasses. Let’s take
this simple example. Imagine that we create a class, an object that is called Electronics.
Now you create two subclasses; Radio and Television. And lastly we create two subclasses
of Television; Cathode and Plasma. Now let’s go all the way back. Plasma and Cathode
are both Televisions. Radio and Television are both Electronics. Do you see the structure?
Both Radio and Television have the attributes and properties of Electronics while both
Cathode and Plasma have the attributes of Television (figure 7.14.1.).
Electronics is the highest superclass. Radio and Television are subclasses of Electronics
and Television is the superclass of Cathode and Plasma. Cathode and Plasma are
subclasses of both Television and Electronics, only that Television is the direct superclass
while Electronics is a higher superclass.

7.14.1. – superclass inheritance by subclasses

Now, why did we complicate it this way? It’s simple. Let’s say those are the definitions of
those classes.

class Electronics
 def turn_on
 end
 def turn_off
 end
end
class Radio < Electronics
 def change_volume(new_volume)
 end
 def switch_radiostation(new_station)
 end

end
class Television < Electronics
 def change_volume(new_volume)
 end
 def switch_channel(new_channel)
 end
end
class Cathode < Television
 def display_on_cathode_pipe
 end
end
class Plasma < Television
 def display_on_plasma_lcd
 end
end

Note how both Radio and Television have change_volume defined. This is because of two
reasons. The first would be what if we made a Hover class? Well, Hover would be a
subclass of Electronics, but you can’t really change the volume of a Hover, can you? Keep
in mind, that if we would have only used Radio and Television, this would have worked out
though. So, to keep your code shorter you can simply define the change_volume in the
Electronics class, it’s no big deal. It’s better if you make your code shorter by avoiding the
definition of a method more than once even though the original method isn’t used by all
subclasses or the superclass itself. Now the interesting thing is that all instances of
Cathode and Plasma can call the methods already defined in Television and Electronics.
The same way Television and Radio can call any method defined in Electronics. They also
have all the instance variables from their superclasses available.
The next thing to mention is something that’s called method overloading (or overriding).
Let’s say, we redefine a few methods in Plasma.

class Plasma
 def turn_on
 super
 change_volume(100)
 end
 def turn_off(flag)
 super()
 if flag
 change_volume(0)
 end
 end
 def switch_channel(new_channel)
 change_volume(0)
 super
 change_volume(100)
 end
end

Note how it’s not necessary to write class Plasma < Television as it was already defined,
though nothing special will happen if you do it again.
Now, what’s happening here? turn_on will first turn the Television on and then change the
volume to 100 if it’s used on a Plasma TV. The super calls the method of the superclass. In

other words you can simply enhance already existing methods similar like aliasing (see 2.1.
for more information). Of course you don’t have to call the superclass’ method. You can just
redefine the method and that’s it.
There’s only one thing you need to keep in mind. Take a look at the redefinitions of turn_off
and switch_channel. The turn_off method from Plasma needs an argument passed on.
Since the superclass’ method doesn’t have an argument specified you necessarily have to
specify that no argument is passed on by using super(). If you leave out the () brackets like
in the redefinition of switch_channel then all arguments are passed on the superclass’
method as is.
The last thing to mention in this are would be mix-in modules. Those are normal modules
defined like modules are defined, though most of the methods are defined as private
(without the self in def self.something), If this module is included in a class it can use it
methods. Let’s create a couple of new classes.

class Person
 def initialize(gender)
 @gender = gender
 end
end
class John < Person
 def initialize
 super(‘male’)
 end
end
class Mike < Person
 def initialize
 super(‘male’)
 end
end
class Cindy < Person
 def initialize
 super(‘female’)
 end
end

Now why should we use modules for this? We can define everything we need over classes
and superclasses. That’s not quite correct. There is a little exception where we just can’t do
that. Let’s say that Mike is a Painter, John a Musician and Cindy is their teacher, so she’s
both Painter and Musician. You see the problem incoming here? It would be hard to define
methods for Painter, Musician and both if they were just classes. So let’s use the mix-in
module approach.

module Painter
 def mix_colors
 end
 def draw_picture
 end
end
module Musician
 def choose instrument
 end

 def read_notes
 end
 def play_music
 end
end

And how can we now make John a Musician, Mike a Painter and Cindy both? We just
include the necessary module (figure 7.14.2.).

class John
 include Musician
end
class Mike < Person
 include Painter
end
class Cindy < Person
 include Painter
 include Musician
end

The last thing that needs to be taken care of is method overloading. It’s pretty simple. The
last definition has the highest priority. Modules have priority over superclasses and classes
have priority over modules.
This approach is not recommended as saving class instances will cause the included
module to be saved as well and will give an error when you try to load a save file if the
module definition was removed from the scripts. I only mentioned this method to make you
familiar with it and show you that something like this is possible, not that you go out there
and use it. It can only do heavy damage to compatibility and is rarely unavoidable. It’s
better to redefine the class itself.

7.14.2. – how mix-ins work

7.15. NFS – Need for Sorting

Have you ever tried to make a sorting method for Array in RGSS? There is no need for it as
there are two compiled methods. One if sort and the other is sort!. They do both about the
same thing, only that sort! sorts the array destructively which means that the array itself will
be modified while sort only returns a sorted array without changing the original. If the array

consists out of numeric values, they will be sorted ASCDESC#####. You can simple
reverse the order if you use the method reverse or reverse! on the array. Keep in mind that
methods that end with an !, execute everything destructively. You cannot only sort numeric
array, you can sort any kind of data by specifying a block where you can define a
comparison conditions and results. Let’s say we want to sort the party members
descending by agility. If the agility is equal, we want it to sort ascending by strength. If the
strength is equal, we want it to sort ascending by name and if even the names are equal
then descending by ID number.

$game_party.actors.sort! {|a, b|
 if a.agi > b.agi
 -1
 elsif a.agi < b.agi
 +1
 elsif a.str > b.str
 +1
 elsif a.str < b.str
 -1
 elsif a.name > b.name
 +1
 elsif a.name < b.name
 -1
 else
 a.id <=> b.id
 end
}

Each actor get compared to another where a is one actor and b the other. If the agility of
actor a is greater than the agility of actor b then the result is -1 which means a will get
shifted more to the left. In the opposite case it’s +1 (you can leave out the + sign). Then the
same comparison is down for strength, only this time the strength comparison results’ signs
are switched. This will cause the one with less strength to be more left in the array. Same
goes for name where the smaller name is defined by comparison of strings. i.e. the string
“coffee” is smaller than “dog” as the first letters are c and d and c is smaller than d. If the
first letter is the same, then the next letter is taken into account. If both words are the same
up to one point, then the shorter string is considered as smaller. Don’t get confused with
the <=> operator. The next three codes are equivalent in the purpose of comparison.

a <=> b

a > b ? +1 : (a < b ? -1 : 0)

(a - b) / (a - b).abs

a - b

This knowledge can sometimes be very useful, so it’s a good idea to memorize it.

7.16. CPU or RAM?

That’s it. You’ve tasted a bit of experience that awaits you if you continue progressing as
scripter. Always try to keep the CPU requirement low and RAM usage to a minimum. If you
can’t do one of those, decide which is more important in this case.

8888. Useful L. Useful L. Useful L. Useful Linksinksinksinks

Since this e-book explains just a few basics, here are several links for those who are eager
to learn more.

Ruby
http://en.wikipedia.org/wiki/Ruby_(programming_language)
Stack
http://en.wikipedia.org/wiki/Stack_(data_structure)
Recursion
http://en.wikipedia.org/wiki/Recursion_(computer_science)
Interpreter
http://en.wikipedia.org/wiki/Interpreter_(computing)
Compiler
http://en.wikipedia.org/wiki/Compiler
Machine Language
http://en.wikipedia.org/wiki/Machine_language
CPU
http://en.wikipedia.org/wiki/Central_processing_unit
http://en.wikipedia.org/wiki/CPU_design
Object-oriented programming
http://en.wikipedia.org/wiki/Object-oriented_programming
RAM
http://en.wikipedia.org/wiki/Random_access_memory
Array
http://en.wikipedia.org/wiki/Array
Hash
http://en.wikipedia.org/wiki/Hash_table
HUD
http://en.wikipedia.org/wiki/HUD_(computer_gaming)
Algorithm complexity
http://en.wikipedia.org/wiki/Complexity
http://en.wikipedia.org/wiki/Computational_complexity_theory
Logarithm
http://en.wikipedia.org/wiki/Logarithm
Boolean Algebra
http://en.wikipedia.org/wiki/Boolean_algebra_(structure)
Call by Value/Call by Reference
http://en.wikipedia.org/wiki/Evaluation_strategy

9999. Summary. Summary. Summary. Summary

Don’t compare yourself with other scripters. You might lose your motivation by thinking “I
will never get as good as him…” On the other hand you could also DO compare yourself
with other scripters. You might be the type of person who says “I want to do better. I can do
better. I will do better.” instead. It’s up to you. None of the good and known scripters today
was just born with his skills. He has earned them through work and experience. This e-
book is a part of my knowledge as a gift to all of you. It’s not only what I have learned from
scripting in RGSS, it’s also what I have learned from programming in general, from what I
have been taught in college and from life itself. Every scripter is unique and his experience
and skills are incomparable with the experience and skills of any other scripter. One day
you will just realize “Hey, I became better than that other guy...”
The RPG Maker XP Help File is always a big help when you get into a dilemma asking
yourself “Can I do that?” or “Does that class support that?” or... That’s why I have included
an enhanced English Help File with an extra chapter by an unknown author and the
Scripts.rxdata with English commented code, improved iteration coding, recoded to avoid
the built-in RGSS bug with conditioning and overworked code to shorten the and improve
the code. Many of you might not have a legal copy of RPG Maker XP and therefore not the
English files. But this does not mean that I encourage illegal copies! I only give
support regardless of the fact that your copy is legal or not! If you like the RMXP
editor and engine, buy it! Reading through the Help File once completely will help you a
lot. You will find many useful methods that can give you results, instead of using your own
code for that. I also included a copy of the RGSS102E.dll
By reading this e-book I hope right now you got the itches to make something more than
just a CMS. And even if it’s a CMS, I hope its moving windows that move from behind a
window to the side and then back over the other window will look cool, since they don’t lag
at all.

